Measuring biomolecules: an image processing and length estimation pipeline using atomic force microscopy to measure DNA and RNA with high precision
نویسنده
چکیده
Background. An important problem in molecular biology is to determine the complete transcription profile of a single cell, a snapshot that shows which genes are being expressed and to what degree. Seen in series as a movie, these snapshots would give direct, specific observation of the cell’s regulation behavior. Taking a snapshot amounts to correctly classifying the cell’s ∼300 000 mRNA molecules into ∼30 000 species, and keeping accurate count of each species. The cell’s transcription profile may be affected by low abundances (1-5 copies) of certain mRNAs; thus, a sufficiently sensitive technique must be employed. A natural choice is to use atomic force microscopy (AFM) to perform single-molecule analysis. Reed et al. (“Single molecule transcription profiling with AFM.”, Nanotechnology, 18:4, 2007) developed such an analysis that classifies each mRNA by first multiply cleaving its corresponding synthesized cDNA with a restriction enzyme, then constructing its classification label from ratios of the lengths of its resulting fragments. Thus, they showed the transcription profiling problem reduces to making high-precision measurements of cDNA backbone lengths — correct to within 20-25 bp (6-7.5 nm). Contribution. We developed an image processing and length estimation pipeline using AFM that can achieve these measurement tolerances. In particular, we developed a biased length estimator using James-Stein shrinkage on trained coefficients of a simple linear regression model, a formulation that subsumes the models we studied. Methods. First, AFM images were processed to extract molecular objects, skeletonize them, select proper backbone objects from the skeletons, then compute initial lengths of the backbones. Second, a linear regression model was trained on a subset of molecules of known length, namely their computed image feature quantities. Third, the model’s coefficients underwent James-Stein shrinkage to create a biased estimator. Fourth, the trained and tuned model was applied to the image feature quantities computed for each test molecule, giving its final, corrected backbone length. Results. Training data: one monodisperse set of cDNA molecules of theoretical length 75 nm. Test data: two monodisperse sets of cDNA molecules of unknown length. Corrected distributions of molecular backbone lengths were within 6-7.5 nm from the theoretical lengths of the unknowns, once revealed. Conclusions. The results suggest our pipeline can be employed in the framework specified by Reed et al. to render single-molecule transcription profiles. The results reveal a high degree of systematic error in AFM measurements that suggests image processing alone is insufficient to achieve a much higher measurement accuracy.
منابع مشابه
Atomic Force Microscopy Application in Biological Research: A Review Study
Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...
متن کاملHigh Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)
In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...
متن کاملQuick Estimation of Apple (Red Delicious and Golden Delicious) Leaf Area and Chlorophyll Content
ABSTRACT- The evaluation of leaf area and leaf nutritional value is important for crop growth modeling and estimations of its performance. The purpose of this study was to use image processing techniques to develop an economical method to ease the assessment of nutrient status and leaf area (LA) of plants and to compare the outcomes of this method with linear models. Leaf area and leaf chloroph...
متن کاملFlexible Helicoids, Atomic Force Microscopy (AFM) Cantilevers in High Mode Vibration, and Concave Notch Hinges in Precision Measurements and Research
Flexible structures are the main components in many precision measuring and research systems. They provide miniaturization, repeatability, minimal damping, low measuring forces, and very high resolution. This article focuses on the modeling, development, and comparison of three typical flexible micronano-structures: flexible helicoids, atomic force microscopy (AFM) cantilevers, and concave notc...
متن کاملLine Optical Tweezers Instrument for Measuring Nanoscale Interactions and Kinetics
We describe an optical tweezers instrument for measuring short-ranged colloidal interactions, based on a combination of a continuous wave line optical tweezers, high speed video microscopy, and laser illumination. Our implementation can measure the separation of two nearly contacting microspheres to better than 4 nm at rates in excess of 10 kHz. A simple image analysis algorithm allows us to se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008